# RedblackRed-Black Trees

Red-black trees are a kind of balanced binary search tree (BST). Keeping the tree balanced ensures that the worst-case running time of operations is logarithmic rather than linear.
This chapter uses Okasaki's algorithms for red-black trees. If you don't recall those or haven't seem them in a while, read one of the following:
You can also consult Wikipedia or other standard textbooks, though they are likely to use different, imperative implementations.
This chapter is based on the Coq standard library module MSetRBT, which can be found at https://coq.inria.fr/distrib/current/stdlib/Coq.MSets.MSetRBT.html. The design decisions for that module are described in the following paper:

# Implementation

We use the int type axiomatized in Extract as the key type.
Definition key := int.

Inductive color := Red | Black.

Inductive tree (V : Type) : Type :=
| E : tree V
| T : color tree V key V tree V tree V.

Arguments E {V}.
Arguments T {V}.

Definition empty_tree (V : Type) : tree V :=
E.
The lookup implementation for red-black trees is exactly the same as the lookup for BSTs, except that the T constructor carries a color component that is ignored.
Fixpoint lookup {V : Type} (d : V) (x: key) (t : tree V) : V :=
match t with
| Ed
| T _ tl k v trif ltb x k then lookup d x tl
else if ltb k x then lookup d x tr
else v
end.
We won't explain the insert algorithm here; read Okasaki's work if you want to understand it. In fact, you'll need very little understanding of it to follow along with the verification below. It uses balance and ins as helpers:
• ins recurses down the tree to find where to insert, and is mostly the same as the BST insert algorithm.
• balance takes care of rebalancing the tree on the way back up.
Definition balance
{V : Type} (c : color) (t1 : tree V) (k : key) (vk : V)
(t2 : tree V) : tree V :=
match c with
| RedT Red t1 k vk t2
| _match t1 with
| T Red (T Red a x vx b) y vy c
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| T Red a x vx (T Red b y vy c) ⇒
T Red (T Black a x vx b) y vy (T Black c k vk t2)
| _match t2 with
| T Red (T Red b y vy c) z vz d
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| T Red b y vy (T Red c z vz d) ⇒
T Red (T Black t1 k vk b) y vy (T Black c z vz d)
| _T Black t1 k vk t2
end
end
end.

Fixpoint ins {V : Type} (x : key) (vx : V) (t : tree V) : tree V :=
match t with
| ET Red E x vx E
| T c a y vy bif ltb x y then balance c (ins x vx a) y vy b
else if ltb y x then balance c a y vy (ins x vx b)
else T c a x vx b
end.

Definition make_black {V : Type} (t : tree V) : tree V :=
match t with
| EE
| T _ a x vx bT Black a x vx b
end.

Definition insert {V : Type} (x : key) (vx : V) (t : tree V) :=
make_black (ins x vx t).
The elements implementation is the same as for BSTs, except that it ignores colors.
Fixpoint elements_aux {V : Type} (t : tree V) (acc: list (key × V))
: list (key × V) :=
match t with
| Eacc
| T _ l k v relements_aux l ((k, v) :: elements_aux r acc)
end.

Definition elements {V : Type} (t : tree V) : list (key × V) :=
elements_aux t [].
Sedgewick has proposed left-leaning red-black trees, which have a simpler balance function but a more complicated representation invariant. He does this in order to make the proof of correctness easier: there are fewer cases in the balance function, and therefore fewer cases in the case-analysis of the proof of correctness of balance. But as you will see, our proofs about balance will have automated case analyses, so we don't care how many cases there are!

# Case-Analysis Automation

Before verifying the correctness of our red-black tree implementation, let's warm up by proving that the result of any insert is a nonempty tree.
Lemma ins_not_E : (V : Type) (x : key) (vx : V) (t : tree V),
ins x vx t E.
Proof.
intros. destruct t; simpl.
discriminate.

(* Let's destruct on the topmost case, ltb x k. We can use
destruct instead of bdestruct because we don't need to know
whether x < k or x k. *)

destruct (ltb x k).
unfold balance.

(* A huge goal!  The proof of this goal begins by matching
against a color. *)

destruct c.
discriminate.

(* Another match, this time against a tree. *)

destruct (ins x vx t1).

(* Another match against a tree. *)

destruct t2.
discriminate.

(* Yet another match. This pattern deserves automation.  The
following tactic applies destruct whenever the current goal is
a match against a color or a tree. *)

match goal with
| ⊢ match ?c with Red_ | Black_ end _destruct c
| ⊢ match ?t with E_ | T _ _ _ _ __ end _destruct t
end.

(* Let's apply that tactic repeatedly. *)

repeat
match goal with
| ⊢ match ?c with Red_ | Black_ end _destruct c
| ⊢ match ?t with E_ | T _ _ _ _ __ end _destruct t
end.

(* Now we're down to a base case. *)

discriminate.

(* And another base case. We could match against those, too. *)

match goal with
| ⊢ T _ _ _ _ _ Ediscriminate
end.

(* Let's restart the proof to incorporate this automation. *)

Abort.

Lemma ins_not_E : (V : Type) (x : key) (vx : V) (t : tree V),
ins x vx t E.
Proof.
intros. destruct t; simpl.
- discriminate.
- unfold balance.
repeat
match goal with
| ⊢ (if ?x then _ else _) _destruct x
| ⊢ match ?c with Red_ | Black_ end _destruct c
| ⊢ match ?t with E_ | T _ _ _ _ __ end _destruct t
| ⊢ T _ _ _ _ _ Ediscriminate
end.
Qed.
This automation of case analysis will be quite useful in the rest of our development.

# The BST Invariant

The BST invariant is mostly the same for red-black trees as it was for ordinary BSTs as defined in SearchTree. We adapt it by ignoring the color of each node, and changing from nat keys to int.
ForallT P t holds if P k v holds for every (k, v) node of tree t.
Fixpoint ForallT {V : Type} (P: int V Prop) (t : tree V) : Prop :=
match t with
| ETrue
| T c l k v rP k v ForallT P l ForallT P r
end.

Inductive BST {V : Type} : tree V Prop :=
| ST_E : BST E
| ST_T : (c : color) (l : tree V) (k : key) (v : V) (r : tree V),
ForallT (fun k' _(Abs k') < (Abs k)) l
ForallT (fun k' _(Abs k') > (Abs k)) r
BST l
BST r
BST (T c l k v r).

Lemma empty_tree_BST : (V : Type), BST (@empty_tree V).
Proof.
unfold empty_tree. constructor.
Qed.
Let's show that insert preserves the BST invariant, that is:
Theorem insert_BST : (V : Type) (t : tree V) (v : V) (k : key),
BST t
BST (insert k v t).
Abort.
It will take quite a bit of work, but automation will help.
First, we show that if a non-empty tree would be a BST, then the balanced version of it is also a BST:
Lemma balance_BST: (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _(Abs k') < (Abs k)) l
ForallT (fun k' _(Abs k') > (Abs k)) r
BST l
BST r
BST (balance c l k v r).
Proof.
intros V c l k v r PL PR BL BR. unfold balance.

repeat
match goal with
| ⊢ BST (match ?c with Red_ | Black_ end) ⇒ destruct c
| ⊢ BST (match ?t with E_ | T _ _ _ _ __ end) ⇒ destruct t
end.

(* 58 cases remaining. *)

- constructor. assumption. assumption. assumption. assumption.
- constructor; auto.
- constructor; auto.
- (* Now the tree gets bigger, and the proof gets more complicated. *)
constructor; auto.

+ simpl in ×. repeat split.
(* The intro pattern ? means to let Coq choose the name. *)
destruct PR as [? _]. lia.

+ simpl in ×. repeat split.
× inv BR. simpl in ×. destruct H5 as [? _]. lia.
× inv BR. simpl in ×. destruct H5 as [_ [? _]]. auto.
× inv BR. simpl in ×. destruct H5 as [_ [_ ?]]. auto.

+ constructor; auto.

+ inv BR. inv H7. constructor; auto.

- constructor; auto.

- (* 53 cases remain. This could go on for a while... *)

Abort.
Let's use some of what we discovered above to automate. Whenever we have a subgoal of the form
ForallT _ (T _ _ _ _ _) we can split it. Whenever we have a hypothesis of the form
BST (T _ _ _ _ _) we can invert it. And with a hypothesis
ForallT _ (T _ _ _ _ _) we can simplify then destruct it. Actually, the simplification is optional -- Coq will do the destruct without needing the simplification. Anything else seems able to be finished with constructor, auto, and lia. Let's see how far that can take us...
Lemma balance_BST: (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _(Abs k') < (Abs k)) l
ForallT (fun k' _(Abs k') > (Abs k)) r
BST l
BST r
BST (balance c l k v r).
Proof.
intros. unfold balance.

repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red_ | Black_ end) ⇒ destruct c
| ⊢ BST (match ?t with E_ | T _ _ _ _ __ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.
41 cases remain. It's a little disappointing that we didn't clear more of them. Let's look at why are we stuck.
All the remaining subgoals appear to be about proving an inequality over all the nodes of a subtree. For example, the first subgoal follows from the hypotheses:

ForallT (fun (k' : int) (_ : V) ⇒ Abs k' > Abs k0) r2
Abs k1 < Abs k0
The other goals look similar.

Abort.
To make progress, we can set up some helper lemmas.
Lemma ForallT_imp : (V : Type) (P Q : int V Prop) t,
ForallT P t
( k v, P k v Q k v)
ForallT Q t.
Proof.
induction t; intros.
- auto.
- destruct H as [? [? ?]]. repeat split; auto.
Qed.

Lemma ForallT_greater : (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _Abs k' > Abs k) t
Abs k > Abs k0
ForallT (fun k' _Abs k' > Abs k0) t.
Proof.
intros. eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.

Lemma ForallT_less : (V : Type) (t : tree V) (k k0 : key),
ForallT (fun k' _Abs k' < Abs k) t
Abs k < Abs k0
ForallT (fun k' _Abs k' < Abs k0) t.
Proof.
intros; eapply ForallT_imp; eauto.
intros. simpl in H1. lia.
Qed.
Lemma balance_BST: (V : Type) (c : color) (l : tree V) (k : key)
(v : V) (r : tree V),
ForallT (fun k' _(Abs k') < (Abs k)) l
ForallT (fun k' _(Abs k') > (Abs k)) r
BST l
BST r
BST (balance c l k v r).
Proof.
intros. unfold balance.

repeat
match goal with
| H: ForallT _ (T _ _ _ _ _) ⊢ _destruct H as [? [? ?] ]
| H: BST (T _ _ _ _ _) ⊢ _inv H
| ⊢ BST (T _ _ _ _ _) ⇒ constructor
| ⊢ BST (match ?c with Red_ | Black_ end) ⇒ destruct c
| ⊢ BST (match ?t with E_ | T _ _ _ _ __ end) ⇒ destruct t
| ⊢ ForallT _ (T _ _ _ _ _) ⇒ repeat split
end;
auto; try lia.

(* all: t applies t to every subgoal. *)
all: try eapply ForallT_greater; try eapply ForallT_less; eauto; try lia.
Qed.

#### Exercise: 2 stars, standard (balanceP)

Prove that balance preserves ForallT P. Use proof automation with match goal and/or all:.
Lemma balanceP : (V : Type) (P : key V Prop) (c : color) (l r : tree V)
(k : key) (v : V),
ForallT P l
ForallT P r
P k v
ForallT P (balance c l k v r).
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 2 stars, standard (insP)

Prove that ins preserves ForallT P. Hint: proceed by induction on t. Use the previous lemma. There's no need for automated case analysis.
Lemma insP : (V : Type) (P : key V Prop) (t : tree V) (k : key) (v : V),
ForallT P t
P k v
ForallT P (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 3 stars, standard (ins_BST)

Prove that ins maintains BST. Proceed by induction on t. You don't need any automated case analysis.
Lemma ins_BST : (V : Type) (t : tree V) (k : key) (v : V),
BST t
BST (ins k v t).
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 2 stars, standard (insert_BST)

Prove the main theorem: insert preserves BST. You do not need induction.
Theorem insert_BST : (V : Type) (t : tree V) (v : V) (k : key),
BST t
BST (insert k v t).
Proof.
(* FILL IN HERE *) Admitted.

# Verification

We now verify that the equational specification of maps holds for red-black trees:
lookup d k empty_tree = d
lookup d k (insert k v t) = v
lookup d k' (insert k v t) = lookup d k' t if kk'
The first equation is trivial to verify.
Lemma lookup_empty : (V : Type) (d : V) (k : key),
lookup d k (@empty_tree V) = d.
Proof. auto. Qed.
The next two equations are more challenging because of balance.

#### Exercise: 4 stars, standard (balance_lookup)

Prove that balance preserves the result of lookup on non-empty trees. Use the same proof technique as in balance_BST.
Lemma balance_lookup: (V : Type) (d : V) (c : color) (k k' : key) (v : V)
(l r : tree V),
BST l
BST r
ForallT (fun k' _Abs k' < Abs k) l
ForallT (fun k' _Abs k' > Abs k) r
lookup d k' (balance c l k v r) =
if Abs k' <? Abs k
then lookup d k' l
else if Abs k' >? Abs k
then lookup d k' r
else v.
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 3 stars, standard (lookup_ins_eq)

Verify the second equation, though for ins rather than insert. Proceed by induction on the evidence that t is a BST. Note that precondition BST t will be essential in your proof, unlike the ordinary BST's we saw in SearchTree.
Hint: no automation of case analysis is needed; rely on the lemmas we've already proved above about balance and ins.
Lemma lookup_ins_eq: (V : Type) (d : V) (t : tree V) (k : key) (v : V),
BST t
lookup d k (ins k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 3 stars, standard (lookup_ins_neq)

Verify the third equation, again for ins instead of insert. The same hints as for the second equation hold.
Theorem lookup_ins_neq: (V : Type) (d : V) (t : tree V) (k k' : key)
(v : V),
BST t
k k'
lookup d k' (ins k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
Finish verifying the second and third equations. The proofs are almost identical to each other. No induction is needed.

#### Exercise: 2 stars, standard (lookup_insert)

Theorem lookup_insert_eq : (V : Type) (d : V) (t : tree V) (k : key)
(v : V),
BST t
lookup d k (insert k v t) = v.
Proof.
(* FILL IN HERE *) Admitted.

Theorem lookup_insert_neq: (V : Type) (d : V) (t : tree V) (k k' : key)
(v : V),
BST t
k k'
lookup d k' (insert k v t) = lookup d k' t.
Proof.
(* FILL IN HERE *) Admitted.
That concludes the verification of the map equations for red-black trees. We have proved these main theorems:
Check empty_tree_BST :
(V : Type),
BST (@empty_tree V).

Check insert_BST :
(V : Type) (t : tree V) (v : V) (k : key),
BST t BST (insert k v t).

Check lookup_empty :
(V : Type) (d : V) (k : key),
lookup d k (@empty_tree V) = d.

Check lookup_insert_eq :
(V : Type) (d : V) (t : tree V) (k : key) (v : V),
BST t lookup d k (insert k v t) = v.

Check lookup_insert_neq :
(V : Type) (d : V) (t : tree V) (k k' : key) (v : V),
BST t
k k'
lookup d k' (insert k v t) = lookup d k' t.
We could now proceed to reprove all the facts about elements that we developed in SearchTree. But since elements does not not pay attention to colors, and does not rebalance the tree, these proofs should be a simple copy-paste from that chapter, with only minor edits. This would be an uninteresting exercise, so we don't pursue it here.

# Efficiency

Red-black trees are more efficient than ordinary search trees, because red-black trees stay balanced. The insert operation ensures that these red-black invariants hold:
• Local Invariant: No red node has a red child.
• Global Invariant: Every path from the root to a leaf has the same number of black nodes.
Together these invariants guarantee that no leaf is more than twice as deep as another leaf, a property that we will here call approximately balanced. The maximum depth of a node is therefore 2 log N, so the running-time of insert and lookup is O(log N), where N is the number of nodes in the tree.
Coq does not have a formal time--cost model for its execution, so we cannot verify that logarithmic running time in Coq. But we can prove that the trees are approximately balanced.
These ensure that the tree remains approximately balanced.
Relation RB, below, formalizes the red-black invariants. Proposition RB t c n holds when t satisfies the red-black invariants, assuming that c is the color of t's parent, and n is the black height that t is supposed to have.
If t happens to have no parent (i.e., it is the entire tree), then it will be colored black by insert, so it won't actually matter what color its (non-existent) parent might purportedly have: whether red or black, it can't violate the local invariant.
If t is a leaf, then it likewise won't matter what its parent color is, and its black height must be zero.
Inductive RB {V : Type} : tree V color nat Prop :=
| RB_leaf: (c : color), RB E c 0
| RB_r: (l r : tree V) (k : key) (v : V) (n : nat),
RB l Red n
RB r Red n
RB (T Red l k v r) Black n
| RB_b: (c : color) (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n
RB r Black n
RB (T Black l k v r) c (S n).

#### Exercise: 1 star, standard (RB_blacken_parent)

Prove that blackening a parent would preserve the red-black invariants.
Lemma RB_blacken_parent : (V : Type) (t : tree V) (n : nat),
RB t Red n RB t Black n.
Proof.
(* FILL IN HERE *) Admitted.
Relation NearlyRB expresses, "the tree is a red-black tree, except that it's nonempty and it is permitted to have two consecutive red nodes at the root only."
Inductive NearlyRB {V : Type} : tree V nat Prop :=
| NearlyRB_r : (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n
RB r Black n
NearlyRB (T Red l k v r) n
| NearlyRB_b : (l r : tree V) (k : key) (v : V) (n : nat),
RB l Black n
RB r Black n
NearlyRB (T Black l k v r) (S n).

#### Exercise: 4 stars, standard (ins_RB)

Prove that ins creates a tree that is either red-black or nearly so, depending on what the parent's color was.
The proof is already completed for you, except for the tactic prove_RB. Replace the provided admit with your own proof automation. Use a technique similar to ins_not_E and balance_lookup -- that is, write a repeat match goal that finds opportunities to use tactics such as bdestruct, destruct, inv, and constructor; as well as previously proved lemmas and auto.

Lemma ins_RB : (V : Type) (k : key) (v : V) (t : tree V) (n : nat),
(RB t Black n NearlyRB (ins k v t) n)
(RB t Red n RB (ins k v t) Black n).
Proof.
induction t; split; intros; inv H; repeat constructor; simpl.
- (* Instantiate the inductive hypotheses. *)
specialize (IHt1 n). specialize (IHt2 n).
(* Derive what propositional facts we can from the hypotheses. *)
intuition.
(* Get rid of some extraneous hypotheses. *)
clear H H1.
(* Finish with automation. *)
prove_RB.

- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.

- specialize (IHt1 n0). specialize (IHt2 n0). intuition.
clear H0 H2.
prove_RB.

(* There's nothing more you need to fill in here. Just don't
forget to change the Admitted. to Qed. when you have
finished developing prove_RB. *)

(* FILL IN HERE *) Admitted.
Therefore, ins produces a red-black tree when given one as input though the parent color changes.
Corollary ins_red : (V : Type) (t : tree V) (k : key) (v : V) (n : nat),
RB t Red n RB (ins k v t) Black n.
Proof.
intros. apply ins_RB. assumption.
Qed.

#### Exercise: 1 star, standard (RB_blacken_root)

Prove that blackening a subtree root (whose hypothetical parent is black) would preserve the red-black invariants, though the black height of the subtree might change (and the color of the parent would need to become red).
Lemma RB_blacken_root : (V : Type) (t : tree V) (n : nat),
RB t Black n
(n' : nat), RB (make_black t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 1 star, standard (insert_RB)

Prove that insert produces a red-black tree when given one as input. This can be done entirely with lemmas already proved.
Lemma insert_RB : (V : Type) (t : tree V) (k : key) (v : V) (n : nat),
RB t Red n
(n' : nat), RB (insert k v t) Red n'.
Proof.
(* FILL IN HERE *) Admitted.

#### Exercise: 4 stars, advanced (redblack_bound)

To confirm that red-black trees are approximately balanced, define functions to compute the height (i.e., maximum depth) and minimum depth of a red-black tree, and prove that the height is bounded by twice the minimum depth, plus 1. Hints:
• The standard library has min and max functions for nat.
• Note that RB does not require the root to be Black.
• Prove two auxiliary lemmas, one about an upper bound on the number of black nodes in a path, and another about a lower bound. Combine those lemmas to prove the main theorem.
• All of the proofs can be quite short. The challenge is to invent helpful lemmas.
Fixpoint height {V : Type} (t : tree V) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Fixpoint mindepth {V : Type} (t : tree V) : nat
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Lemma redblack_balanced : (V : Type) (t : tree V) (c : color) (n : nat),
RB t c n
(height t 2 × mindepth t + 1)%nat.
Proof.
(* FILL IN HERE *) Admitted.

(* Do not modify the following line: *)
Definition manual_grade_for_redblack_bound : option (nat×string) := None.

# Performance of Extracted Code

We can extract the red-black tree implementation:
Extraction "redblack.ml" empty_tree insert lookup elements.
Run it in the OCaml top level with these commands:
```    #use "redblack.ml";;
#use "test_searchtree.ml";;
```
On a recent machine with a 2.9 GHz Intel Core i9 that prints:
```    Insert and lookup 1000000 random integers in 0.860663 seconds.
Insert and lookup 20000 random integers in 0.007908 seconds.
Insert and lookup 20000 consecutive integers in 0.004668 seconds.
```
That execution uses the bytecode interpreter. The native compiler will have better performance:
```      \$ ocamlopt -c redblack.mli redblack.ml
\$ ocamlopt redblack.cmx -open Redblack test_searchtree.ml -o test_redblack
\$ ./test_redblack
```
On the same machine that prints,
```    Insert and lookup 1000000 random integers in 0.475669 seconds.
Insert and lookup 20000 random integers in 0.00312 seconds.
Insert and lookup 20000 consecutive integers in 0.001183 seconds.
```
The benchmark measurements above (and in Extract) demonstrate the following:
• On random insertions, red-black trees are about the same as ordinary BSTs.
• On consecutive insertions, red-black trees are much faster than ordinary BSTs.
• Red-black trees are about as fast on consecutive insertions as on random.
(* 2023-08-23 11:34 *)